
2026/02/04 12:10 1/3 Vulnerable Code

Stefan Langhammer

Vulnerable Code

#include <string.h>

void vulnerable_function(char* input) {
 char buffer[10];
 strcpy(buffer, input);
}

int main() {
 char input_string[] = "This input is too long!";
 vulnerable_function(input_string);
 return 0;
}

<code>

====== Stack 1 ======

<code c>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

char buffer[50];

int copy_buffer(char *input_buffer) {
 strcpy(buffer, argv[1]);

 printf("DEBUG: strcpy() executed...\n");
}

int main(int argc, char *argv[]) {

 if (argc < 2) {
 printf("Syntax error\n");
 printf("Syntax: %s <characters>\n", argv[0]);
 exit(0);
 }

 copy_buffer(argv[1]);

 printf("buffer content= %s\n", buffer);

http://www.opengroup.org/onlinepubs/009695399/functions/strcpy.html
http://www.opengroup.org/onlinepubs/009695399/functions/strcpy.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/exit.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2023/03/09 06:40 ex:vcode:start https://xn--e-br-noa.de/doku.php?id=ex:vcode:start&rev=1678340421

Stefan Langhammer 2026/02/04 12:10

 return 0;
}

Stack 2

titan.net2k@protonmail.ch
show me an example of a buffer overflow for windows in c that uses
commandline input and a seperate function

Sure! Here's an example of a buffer overflow vulnerability in C for Windows
that uses command-line input and a separate function:

c
Copy code
#include <stdio.h>
#include <string.h>

void vulnerable_function(char *input) {
 char buffer[10];
 strcpy(buffer, input);
}

int main(int argc, char *argv[]) {
 vulnerable_function(argv[1]);
 printf("You entered: %s\n", argv[1]);
 return 0;
}
In this example, the program takes a string argument from the command line
and passes it to the vulnerable_function function, which copies it into a
fixed-size buffer of size 10 using the strcpy function. If the argument
passed in is longer than the buffer size, the strcpy function will write
beyond the bounds of the buffer and overwrite other data on the stack.

To exploit this vulnerability, an attacker could pass in a string argument
longer than the buffer size that contains code or data that they want to
execute or modify.

To prevent this type of vulnerability, it's important to use functions that
limit the amount of data written to a buffer, such as strncpy, and to
validate input to ensure that it does not exceed the buffer size.
Additionally, it's important to use secure programming practices like input
validation and data sanitization. One way to fix this vulnerability is to
use a buffer of sufficient size for the input and to use functions that
limit the amount of data written to the buffer. Another solution is to use a
buffer overflow protection mechanism like Microsoft's /GS (Buffer Security
Check) or Address Space Layout Randomization (ASLR) to prevent stack buffer
overflows.

2026/02/04 12:10 3/3 Vulnerable Code

Stefan Langhammer

<code>

====== Heap 2 ======

<code c>
#
https://infosecwriteups.com/stack-based-buffer-overflow-practical-for-window
s-vulnserver-8d2be7321af5

#include<stdio.h>
#include<string.h>

int main(void)
{
 char buff[15];
 int pass = 0;
 printf("\n Enter the password : \n");
 gets(buff);
 if(strcmp(buff, "P@ssw0rd")) {
 printf("\n Wrong Password \n");
 }
 else {
 printf("\n Correct Password \n");
 pass = 1;
 }
 if(pass) {
 printf("\n Execute guarded command \n");
 char command[50];
 strcpy(command, "ls -l");
 system(command);
 }
return 0;
}

	Vulnerable Code
	Stack 2

